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In this paper we consider the anharmonic corrections to the anisotropic elastic rod model for DNA. Our
model accounts for the difference between the bending energies of positive and negative rolls, which comes
from the asymmetric structure of the DNA molecule. We will show that the model can explain the high
flexibility of DNA at small length scales, as well as kink formation at high deformation limit.
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I. INTRODUCTION

Characterizing the elastic behavior of DNA molecule is of
crucial importance in understanding its biological functions.
In recent years, single-molecule experiments such as DNA
stretching and cyclization �1,2� have provided us with valu-
able information about the elasticity of long DNA molecules.
The results of these experiments can be described by the
elastic rod model �also called wormlike-chain model� �3,4�.
In this model it is assumed that the elastic energy is a har-
monic function of the deformation �4,5�. The elastic rod
model is very successful in explaining the elastic behavior of
the micron-size DNA molecules.

Recently, modern experimental techniques have made it
possible to study the elasticity of DNA at nanometer length
scale �6–9�. In these experiments it is observed that short
DNA molecules are much more flexible than predicted by the
elastic rod model. Although there is some doubt about the
results of some of these experiments �10�, several different
models have been presented by now that try to explain the
origin of this discrepancy by considering the possibility of
local DNA melting �9,11–13� or the occurrence of kinks in
the DNA structure �14�. Also Wiggins et al. ��8� suggested an
alternative form for the elastic energy �15�.

Since the DNA is not a symmetric molecule, the energy
required to bend the DNA over its major groove is not equal
to the energy required to bend it over its minor groove. The
model, which is introduced in this paper, takes this difference
into account. The effect of asymmetric structure of DNA on
its elastic energy has been discussed previously by Marko
and Siggia �5�, where they showed that there must be a cou-
pling term between bend and twist in the harmonic elastic
energy. We will discuss that the asymmetric structure of
DNA can also be introduced as a correction to the harmonic
elastic energy, which is of the third order. We shall show that
our asymmetric elastic rod model can account for the high
flexibility of short DNA molecules.

II. MODEL

In the elastic rod model DNA is represented by a continu-
ous inextensible rod �3,4�. The curve, which passes through
the rod center, determines the configuration of the DNA in

three-dimensional �3D� space. This curve is denoted by r� and
is parametrized by the arc-length parameter s �Fig. 1�. In
addition, a local coordinate system with an orthonormal basis

�d̂1 , d̂2 , d̂3� is attached to each point of the rod. As depicted in

Fig. 1, d̂3�s� is tangent to the curve r� at each point, d̂3�s�
=dr� /ds, d̂1�s� is perpendicular to d̂3�s� and points toward the

major groove, and d̂2�s� is defined as d̂2�s�= d̂3�s�d̂1�s�.
These three orthogonal vectors uniquely determine the three
dimensional configuration of DNA. From classical mechan-
ics we have

ḋ̂i = �� � d̂i i = 1,2,3, �1�

where the dot denotes the derivative with respect to s and ��

is called the spatial angular velocity. The components of �� in
the local coordinate system are denoted by �1, �2, and �3.
The elastic energy of an inextensible DNA in the most gen-
eral form can then be written as

E = �
0

L

E��1�s�,�2�s�,�3�s��ds , �2�

where L is the total length of DNA. E�s� is the energy per
unit length of DNA, i.e., the energy density, at point s. For
small deformations, the energy density can be written as a
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FIG. 1. Parametrization of the elastic rod. The local frame

�d̂1 , d̂2 , d̂3� is attached to the rod.
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Taylor expansion about the lowest-energy configuration �5�.
For a DNA with no intrinsic curvature and a constant intrin-
sic twist �0, the lowest-energy configuration is given by
�� 0= �0,0 ,�0�T. Thus, at the lowest order, we arrive at a har-
monic energy density in the form

Eharm��1,�2,�3� =
1

2
kBTr��

TQ�� , �3�

where kB is the Boltzmann constant, Tr�300 °K is the room
temperature, and �� is defined by �� =�� −�� 0. Q is a 3�3
symmetric matrix whose elements are the elastic constants of
DNA �3,4,16�. Considering a short segment of DNA with the
length ds at point s, this segment has a symmetry under 180°

rotation about the local d̂1 axis at point s. Thus the odd
powers of �1 must not appear in the expansion of energy
density, and the matrix Q has only four independent nonzero
elements: Q11, Q22, Q33, and Q23. Therefore, the harmonic
energy density can be written as �5�

Eharm =
1

2
kBTr�A1�1

2 + A2�2
2 + C��3 − �0�2

+ 2D�2��3 − �0�� . �4�

The first two terms in Eq. �4� correspond to the bending of
DNA over its grooves �roll� and over its backbone �tilt�, re-
spectively. A1 and A2 are the corresponding bending con-
stants. Since roll requires less energy than tilt �17–19�, one
expects that A2�A1. The third term indicates the energy
needed for twisting the DNA about its central axis, with the
twist constant C. Finally, the fourth term accounts for the
coupling between roll and twist �20�. Although the elastic
constants of DNA may depend on the sequence �16�, in this
paper we neglect sequence dependence and assume that they
are constant all along the DNA.

The existence of twist-roll coupling indicates that there is
indeed a difference between bending over major groove
�positive roll� and bending over minor groove �negative roll�:
for positive values of D, the DNA has a tendency to untwist
when roll is positive and to overtwist when roll is negative.

To account for the effect of asymmetry on the bending
energy of DNA, we need a term in the energy density, which
is an odd function of �2, and does not depend on �1 or �3.
There is no such term in the harmonic elastic energy, so we
consider third-order terms in the expansion of energy den-
sity. The term proportional to �2

3 has the desired property.
On the basis of some theoretical analysis �21�, as well as
experimental evidences �22� and simulation studies �23�, we
assume that negative roll is more favorable than positive roll.
Thus we write the third-order term in the form +1 /3!F2�2

3,
where F is a real parameter. �It must be noted that the main
conclusion of the paper remains valid if positive roll is easier
than negative roll. To account for this case, one can write the
third-order term in the form −1 /3!F2�2

3.� To keep the model
as simple as possible, we neglect couplings in all orders, as
well as higher-order corrections to the twist energy. So the
only third-order term that enters in the model is 1 /3!F2�2

3.
Since the elastic energy must have a lower bound, we must
keep the fourth-order correction to the roll energy, i.e., the

term proportional to �2
4, in the model. For consistency of the

model, we also keep the corresponding fourth-order correc-
tion to the tilt energy. Since the anisotropy in bending energy
is accounted for in the second order, to reduce the model free
parameters, we write the fourth-order terms in the form
1 /4!G3��1

4+�2
4�, with G as real and positive. Adding third-

order and fourth-order terms to the harmonic energy density,
we obtain the asymmetric elastic rod model, which is given
by

Easym = kBTr	1

2
A1�1

2 +
1

2
A2�2

2 +
1

2
C��3 − �0�2 +

1

3!
F2�2

3

+
1

4!
G3��1

4 + �2
4�
 . �5�

This model accounts for the asymmetry between positive and
negative rolls, as well as the difference in the energies of roll
and tilt. Since there is no coupling term in the model, roll,
tilt, and twist can be regarded as independent deformations,
and the energy density can be decomposed into three sepa-
rate terms,

Easym��1,�2,�3� = E1��1� + E2��2� + E3��3� , �6�

where

E1 = kBTr	1

2
A1�1

2 +
1

4!
G3�1

4
 , �7�

E2 = kBTr	1

2
A2�2

2 +
1

3!
F2�2

3 +
1

4!
G3�2

4
 , �8�

E3 =
1

2
kBTrC��3 − �0�2 �9�

Depending on the values of A2, F, and G, E2 can take
three different forms �see Fig. 2�. For small values of F, E2
has only one minimum at �2=0 and its curvature is always
positive. For F� �2A2G3�1/4 the curvature of E2 can change
sign and there are two inflection points. For given A2 and G
there exists an upper bound Fc= �8 /3A2G3�1/4, beyond which
E2 has two minima: one at �2=0 and the other one at a
negative �2. In this case DNA has two stable configurations,
and there is always a barrier between them. However, one
expects that the barrier is not large compared to kBTr for a
real DNA.

III. RESULTS AND DISCUSSION

To study the elastic behavior of DNA in the asymmetric
elastic rod model, we calculate the distribution function
P���, the probability that the DNA bends into an angle �.
The effective bending energy can be related to log P��� as
follows: for a two-dimensional �2D� DNA, the effective
bending energy is defined as

Eeff
2D��� = − kBTr log P��� , �10�
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while in three dimensions, the effective bending energy is
given by �24�

Eeff
3D��� = − kBTr log

P���
sin���

. �11�

We use a Monte Carlo simulation to calculate P���. In this
simulation we discretize each chain into separate segments of
length l0=0.34 nm, equal to the base-pair separation in
DNA. The orientation of each segment is then determined by
a vector �� , where ��� � determines the rotation angle of the
local coordinate system with respect to the laboratory coor-
dinate system, and the direction of �� indicates the normal to
the plane of rotation. The special angular velocity is related
to �� as �� =�� / l0. In each Monte Carlo move, we randomly
choose a segment along the chain, and for that segment we
change the vector �� by 	�� . The direction of 	�� is random,
and its magnitude is chosen randomly in the interval �0,�0�.
�0 is chosen so that the accept ratio is about 0.5. We do not
include the self-avoiding in the simulation since the prob-
ability of self-crossing is small for the short simulated DNA
molecules.

Recently, Wiggins et al. �8� used atomic force microscopy
to measure distribution of the bending angle of short DNA
molecules. Although the DNA molecules in the experiment
of Wiggins et al. �8� has the characteristic properties of two-
dimensional polymers �8�, to simulate the experiment we do
not confine the DNA completely in a plane. The reason is
that the minimum-energy configuration of an anisotropic
DNA is not planar, although the deviation from a planar con-
figuration is negligible �25�. It is known in the anisotropic-
harmonic elastic rod model that the effective bending con-
stant of long DNA molecules in three dimensions is equal to
the harmonic average of A1 and A2 �16,18,19�, Aeff
= �1 /2�1 /A1+1 /A2��−1, while in the two dimensions the ef-

fective bending constant is given by Aeff
2D=�A1A2 �26�. Since

Aeff
2D is always greater than Aeff, confining the DNA in a plane

costs energy. For this reason, we allow the DNA to come out
of the plane by 0.3 nm, which is seven times smaller than
DNA diameter and lies in the range of atomic length scales.

Following other studies �4,27�, we assume that A1=2A2,
C=100 nm, and �0=1.8 nm−1. The values of A2, F, and G
are then determined by fitting the theoretical results to the
experimental data of Wiggins et al. �8� for L=5 nm, with the
constraint that the persistence length of the DNA is 54 nm. A
good fit is shown in Fig. 3, which corresponds to A2
=43.50 nm, G=3.20 nm, and F=7.90 nm. It can be seen
that, with this set of the parameters, the model can explain
the experimental data for L=5 nm, as well as L=10 nm and
L=30 nm.

We report the values of the fitting parameter with three
significant digits. The reason is that E2 is very sensitive to the
changes of the parameters, especially when it has two
minima. In fact, a change in the order of 10−2 nm in these
parameters may results in a change in E2 on the order of
1kBTr / l0 �see Fig. 2� and therefore can significantly affect the
elastic behavior of DNA. We must note here that the ratio
A1 /A2 is also relevant to the fitting procedure. However, one
can obtain equally good fits for different values of A1 /A2.

The predictions of isotropic-harmonic elastic rod model
are shown in Fig. 3 for comparison. As can be seen, both in
the experiment and our model, Eeff

2D��� deviates from the har-
monic model at large bending angles.

The functional form of E2 for A2=43.50 nm, F
=7.90 nm, and G=3.20 nm is shown in Fig. 2, which has
two minima. The second minimum occurs at �2=
−3.3 nm−1, which corresponds to a −64° roll between adja-
cent base pairs. Thus, the existence of a second minimum
can lead to the formation of kinks in the minor groove direc-
tion in a tightly bent DNA. Continuing the graphs in Fig. 3,
they arrive to an approximately linear regime. This linear
behavior is a signature of kink formation. Both the slope of
the line and the crossover point are related to the values of F
and G.
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FIG. 2. �Color online� E2 as a function of �2 for A2

=43.50 nm and different values of F and G. Dashed curve �black�:
F=G=0. Dash-dot curve: �blue� G=3.20 nm and F=7.20 nm; E2

has one minimum and its curvature is positive everywhere. Dash-
cross curve �green�: G=3.20 nm and F=7.80 nm; E2 has two in-
flection points and one minimum. Solid curve �red�: G=3.20 nm
and F=7.90 nm; E2 has two minima. Dash-square curve �magenta�:
G=3.20 nm and F=7.94 nm. Note that a change of 0.04 nm in F
results in a change of about 1 kBTr / l0 in E2 in the vicinity of the
second minimum.
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FIG. 3. �Color online� Eeff
2D as a function of � for three different

DNA lengths. Top �red�: L=5 nm. Middle �green�: L=10 nm. Bot-
tom �blue�: L=30 nm. Dots show the experimental data of Wiggins
et al. �8�. Curves show the theoretical results. Dashed curves:
isotropic-harmonic elastic rod model, with A1=A2=54 nm and F
=G=0. Solid curves: A1=87.00 nm, A2=43.50 nm, F=7.90 nm,
and G=3.20 nm.
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The possibility of kink formation in the DNA structure
has been considered previously by other authors. It was first
mentioned by Crick and Klug �21�, who proposed an atom-
istic structure for a kinked DNA. They suggested that DNA
can be kinked most easily toward the minor groove. Nelson
and co-workers �14� presented a simple model for kinkable
elastic rods in which the kinks are completely flexible and
can be formed in any direction with equal probability. Their
model can explain the high cyclization probability of short
DNA molecules �6,7�. The linear behavior is also observed in
their model �14� but the slope of the line is always zero. In a
recent experiment, Du et al. �28� proved the existence of
kinks in DNA minicircles of 64–65 bp. Kinks in the direc-
tion of minor groove have been observed in the structure of
nucleosomal DNA �22�. Molecular dynamics simulations on
a 94 bp minicircle �23� also show that kinks are formed, with
the same structure predicted by Crick and Klug �21� and with
a −80° roll angle at the kink location. This roll angle is
somewhat higher than the value obtained from the data of
Wiggins et al. �8�, but since the DNA is not free in this
simulation, the difference may be due to the existence of the
external stress. This discrepancy can also be due to the dif-
ference in the values of the elastic constants. In the experi-
ment of Wiggins et al. �8�, DNA is absorbed electrostatically
on a mica surface using magnesium ions, and the solvent is
dried. It is expected that the elastic constants of DNA in
these conditions differ from the elastic constant of DNA in
solution �13�.

Kinks are also observed in the crystal structures of non-
histone protein-DNA complexes �20,29�. In these complexes,
DNA has a clear tendency to kink in the major groove direc-
tion. Du et al. �28� found the distribution function P��� for a
base-pair step in these complexes �10�. Although it is contra-
dictory to our primary assumption that kinks are formed to-
ward the manor groove, our model can be fitted to the data of
Du et al. �28� by writing the third-order term in the form
−1 /3!F2�2

3, and choosing F=8.86 nm and G=3.83 nm. We
found that the model with these values of F and G cannot
explain the experimental data of Wiggins et al. �8�. This
shows that the statistical property of DNA in the protein-

DNA complexes certainly differs from the free DNA. This
difference is probably due to the interaction of proteins with
DNA, which can alter the DNA conformation dramatically,
and leads to different effective elastic constants.

In the asymmetric elastic rod model, the bending energy
depends on the bending direction. Thus, it is possible that
confining the DNA in a plane affects the elastic properties of
DNA, and the elastic behavior of DNA in 2D and 3D may be
different. Figure 4 shows the effective energy in three dimen-
sions for three different DNA length with the same elastic
constants obtained from the data of Wiggins et al. �8�. The
dashed curves in Fig. 4 are the same curves depicted in Fig.
3 and show the effective bending energy for a �nearly� two-
dimensional DNA. A constant is added to the three-
dimensional effective energy so that Eeff

3D is equal to Eeff
2D at

�=0. It can be seen that, with the parameter used in Fig. 4,
the anharmonic effects show up also in three dimensions. In
addition, there is a significant difference between the two-
dimensional and the three-dimensional effective bending en-
ergies, especially at large bending angles where the asym-
metric term in the bending energy is dominant. The effective
energy is lower in 3D, which is expected since in three di-
mensions there is more possible ways for DNA to bend in the
easy directions. A similar behavior is observed for the
anisotropic-harmonic DNA �26�.

It is important to study the effect of temperature changing
on the elastic behavior of DNA in our model. In principle,
the elastic constants of DNA are temperature dependent. But
even if they do not depend on temperature, it is expected that
changing the temperature affects P���, especially when there
exist two minima in the roll energy. Figure 5 shows Eeff

2D���
for L=5 nm and three different temperatures. It can be seen
that the effective bending energy depends strongly on tem-
perature, especially at large bending angles where the prob-
ability of the kink formation is high. The behavior shown in
Fig. 5 is not specific to the asymmetric elastic rod model and
is observed in all kinds of kinkable elastic rod models �13�.

IV. CONCLUSION

In this paper, we presented a generalization of the aniso-
tropic elastic rod model, assuming that the energies of posi-
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FIG. 4. �Color online� Effective bending energy as a function of
� for three-dimensional �solid curves� and two-dimensional �dashed
curves� DNA molecules with different lengths. Top curves �red�:
L=5 nm. Middle curves �green�: L=10 nm. Bottom curves �blue�:
L=30 nm. The values of the elastic constants are given in the cap-
tion of Fig. 3.

0 0.5 1 1.5

0

2

4

6

8

10

12

θ (rad)

E
ef

f
2D

(θ
)

/
k B

T
r

FIG. 5. �Color online� Eeff
2D as a function of � for L=5 nm and

three different temperatures. From top to bottom: T=Tr=300 °K
�red�, T=330 °K �green�, and T=360 °K �blue�. The values of the
elastic constants are given in the caption of Fig. 3.
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tive and negative rolls are different as a result of the asym-
metric structure of DNA. We showed that this model can
explain the elastic behavior of short DNA molecules. We
also showed that this model allows the formation of kinks in
the DNA structure when the DNA is tightly bent. The kinks
always form in one of the groove directions, as suggested by
other studies. The elastic behavior of DNA in three dimen-
sions and the dependence of the effective bending energy on
the temperature were also studied.
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